Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Platelets ; 33(2): 200-207, 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1788406

ABSTRACT

Evolving evidence demonstrates that platelets have major roles in viral syndromes through previously unrecognized viral sensing and effector functions. Activated platelets and increased platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The mechanisms and outcomes of platelet-leukocyte interactions depend on the interacting leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss the mechanisms involved in platelet interactions with leukocytes and its functions during viral infections. We focus on the contributions of human platelet-leukocyte interactions to pathophysiological and protective responses during viral infections of major global health relevance, including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.


Subject(s)
Blood Platelets/metabolism , Leukocytes/metabolism , Virus Diseases/blood , Humans
2.
Biomark Med ; 16(1): 41-50, 2022 01.
Article in English | MEDLINE | ID: covidwho-1523645

ABSTRACT

Viral diseases remain a significant global health threat, and therefore prioritization of limited healthcare resources is required to effectively manage dangerous viral disease outbreaks. In a pandemic of a newly emerged virus that is yet to be well understood, a noninvasive host-derived prognostic biomarker is invaluable for risk prediction. Red blood cell distribution width (RDW), an index of red blood cell size disorder (anisocytosis), is a potential predictive biomarker for severity of many diseases. In view of the need to prioritize resources during response to outbreaks, this review highlights the prospects and challenges of RDW as a prognostic biomarker for viral infections, with a focus on hepatitis and COVID-19, and provides an outlook to improve the prognostic performance of RDW for risk prediction in viral diseases.


Subject(s)
Erythrocyte Indices , Virus Diseases/diagnosis , Animals , Biomarkers/analysis , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Erythrocytes/cytology , Hepatitis/blood , Hepatitis/diagnosis , Humans , Prognosis , Virus Diseases/blood
3.
BMC Pulm Med ; 21(1): 308, 2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1439539

ABSTRACT

BACKGROUND: Whether procalcitonin (PCT) or C-reactive protein (CRP) combined with certain clinical characteristics can better distinguish viral from bacterial infections remains unclear. The aim of the study was to assess the ability of PCT or CRP combined with clinical characteristics to distinguish between viral and bacterial infections in hospitalized non-intensive care unit (ICU) adults with lower respiratory tract infection (LRTI). METHODS: This was a post-hoc analysis of a randomized clinical trial previously conducted among LRTI patients. The ability of PCT, CRP and PCT or CRP combined with clinical symptoms to discriminate between viral and bacterial infection were assessed by portraying receiver operating characteristic (ROC) curves among patients with only a viral or a typical bacterial infection. RESULTS: In total, 209 infected patients (viral 69%, bacterial 31%) were included in the study. When using CRP or PCT to discriminate between viral and bacterial LRTI, the optimal cut-off points were 22 mg/L and 0.18 ng/mL, respectively. When the optimal cut-off for CRP (≤ 22 mg/L) or PCT (≤ 0.18 ng/mL) combined with rhinorrhea was used to discriminate viral from bacterial LRTI, the AUCs were 0.81 (95% CI: 0.75-0.87) and 0.80 (95% CI: 0.74-0.86), which was statistically significantly better than when CRP or PCT used alone (p < 0.001). When CRP ≤ 22 mg/L, PCT ≤ 0.18 ng/mL and rhinorrhea were combined, the AUC was 0.86 (95% CI: 0.80-0.91), which was statistically significantly higher than when CRP (≤ 22 mg/L) or PCT (≤ 0.18 ng/mL) was combined with rhinorrhea (p = 0.011 and p = 0.021). CONCLUSIONS: Either CRP ≤ 22 mg/L or PCT ≤ 0.18 ng/mL combined with rhinorrhea could help distinguish viral from bacterial infections in hospitalized non-ICU adults with LRTI. When rhinorrhea was combined together, discrimination ability was further improved.


Subject(s)
C-Reactive Protein/metabolism , Procalcitonin/blood , Respiratory Tract Infections/microbiology , Rhinorrhea/complications , Virus Diseases/diagnosis , Aged , Area Under Curve , Bacterial Infections/diagnosis , Female , Hospitalization , Humans , Male , Middle Aged , ROC Curve , Respiratory Tract Infections/blood , Retrospective Studies , Virus Diseases/blood
4.
Crit Care Med ; 49(10): 1664-1673, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452743

ABSTRACT

OBJECTIVES: The rapid diagnosis of acute infections and sepsis remains a serious challenge. As a result of limitations in current diagnostics, guidelines recommend early antimicrobials for suspected sepsis patients to improve outcomes at a cost to antimicrobial stewardship. We aimed to develop and prospectively validate a new, 29-messenger RNA blood-based host-response classifier Inflammatix Bacterial Viral Non-Infected version 2 (IMX-BVN-2) to determine the likelihood of bacterial and viral infections. DESIGN: Prospective observational study. SETTING: Emergency Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany. PATIENTS: Three hundred twelve adult patients presenting to the emergency department with suspected acute infections or sepsis with at least one vital sign change. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Gene expression levels from extracted whole blood RNA was quantified on a NanoString nCounter SPRINT (NanoString Technologies, Seattle, WA). Two predicted probability scores for the presence of bacterial and viral infection were calculated using the IMX-BVN-2 neural network classifier, which was trained on an independent development set. The IMX-BVN-2 bacterial score showed an area under the receiver operating curve for adjudicated bacterial versus ruled out bacterial infection of 0.90 (95% CI, 0.85-0.95) compared with 0.89 (95% CI, 0.84-0.94) for procalcitonin with procalcitonin being used in the adjudication. The IMX-BVN-2 viral score area under the receiver operating curve for adjudicated versus ruled out viral infection was 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: IMX-BVN-2 demonstrated accuracy for detecting both viral infections and bacterial infections. This shows the potential of host-response tests as a novel and practical approach for determining the causes of infections, which could improve patient outcomes while upholding antimicrobial stewardship.


Subject(s)
Bacterial Infections/diagnosis , RNA, Messenger/analysis , Virus Diseases/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Bacterial Infections/blood , Bacterial Infections/physiopathology , Berlin , Biomarkers/analysis , Biomarkers/blood , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Prospective Studies , RNA, Messenger/blood , ROC Curve , Virus Diseases/blood , Virus Diseases/physiopathology
5.
Sci Rep ; 10(1): 14186, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-1434143

ABSTRACT

Infections cause varying degrees of haemostatic dysfunction which can be detected by clot waveform analysis (CWA), a global haemostatic marker. CWA has been shown to predict poor outcomes in severe infections with disseminated intravascular coagulopathy. The effect of less severe bacterial and viral infections on CWA has not been established. We hypothesized that different infections influence CWA distinctively. Patients admitted with bacterial infections, dengue and upper respiratory tract viral infections were recruited if they had an activated partial thromboplastin time (aPTT) measured on admission. APTT-based CWA was performed on Sysmex CS2100i automated analyser using Dade Actin FSL reagent. CWA parameters [(maximum velocity (min1), maximum acceleration (min2) and maximum deceleration (max2)] were compared against control patients. Infected patients (n = 101) had longer aPTT than controls (n = 112) (34.37 ± 7.72 s vs 27.80 ± 1.59 s, p < 0.001), with the mean (± SD) aPTT longest in dengue infection (n = 36) (37.99 ± 7.93 s), followed by bacterial infection (n = 52) (33.96 ± 7.33 s) and respiratory viral infection (n = 13) (29.98 ± 3.92 s). Compared to controls (min1; min2; max2) (5.53 ± 1.16%/s; 0.89 ± 0.19%/s2; 0.74 ± 0.16%/s2), bacterial infection has higher CWA results (6.92 ± 1.60%/s; 1.04 ± 0.28%/s2; 0.82 ± 0.24%/s2, all p < 0.05); dengue infection has significantly lower CWA values (3.93 ± 1.32%/s; 0.57 ± 0.17%/s2; 0.43 ± 0.14%/s2, all p < 0.001) whilst respiratory virus infection has similar results (6.19 ± 1.32%/s; 0.95 ± 0.21%/s2; 0.73 ± 0.18%/s2, all p > 0.05). CWA parameters demonstrated positive correlation with C-reactive protein levels (min1: r = 0.54, min2: r = 0.44, max2: r = 0.34; all p < 0.01). Different infections affect CWA distinctively. CWA could provide information on the haemostatic milieu triggered by infection and further studies are needed to better define its application in this area.


Subject(s)
Bacterial Infections/blood , Hemostasis , Partial Thromboplastin Time/methods , Virus Diseases/blood , Aged , Aged, 80 and over , C-Reactive Protein/analysis , Dengue/blood , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/etiology , Elective Surgical Procedures , Female , Humans , Male , Middle Aged , Procalcitonin/blood , Respiratory Tract Infections/blood
6.
Front Immunol ; 12: 659419, 2021.
Article in English | MEDLINE | ID: covidwho-1389180

ABSTRACT

Highly pathogenic virus infections usually trigger cytokine storms, which may have adverse effects on vital organs and result in high mortalities. The two cytokines interleukin (IL)-4 and interferon (IFN)-γ play key roles in the generation and regulation of cytokine storms. However, it is still unclear whether the cytokine with the largest induction amplitude is the same under different virus infections. It is unknown which is the most critical and whether there are any mathematical formulas that can fit the changing rules of cytokines. Three coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), three influenza viruses (2009H1N1, H5N1 and H7N9), Ebola virus, human immunodeficiency virus, dengue virus, Zika virus, West Nile virus, hepatitis B virus, hepatitis C virus, and enterovirus 71 were included in this analysis. We retrieved the cytokine fold change (FC), viral load, and clearance rate data from these highly pathogenic virus infections in humans and analyzed the correlations among them. Our analysis showed that interferon-inducible protein (IP)-10, IL-6, IL-8 and IL-17 are the most common cytokines with the largest induction amplitudes. Equations were obtained: the maximum induced cytokine (max) FC = IFN-γ FC × (IFN-γ FC/IL-4 FC) (if IFN-γ FC/IL-4 FC > 1); max FC = IL-4 FC (if IFN-γ FC/IL-4 FC < 1). For IFN-γ-inducible infections, 1.30 × log2 (IFN-γ FC) = log10 (viral load) - 2.48 - 2.83 × (clearance rate). The clinical relevance of cytokines and their antagonists is also discussed.


Subject(s)
Cytokine Release Syndrome/immunology , Cytokines/blood , Models, Immunological , Virus Diseases/complications , Biomarkers/blood , Biomarkers/metabolism , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Viral Load/immunology , Virus Diseases/blood , Virus Diseases/immunology , Virus Diseases/virology
7.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1385739

ABSTRACT

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Subject(s)
Immunity/genetics , Virus Diseases/immunology , Antigen Presentation/genetics , Cohort Studies , Hematopoiesis/genetics , Humans , Interferons/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Prognosis , Severity of Illness Index , Systems Biology , Transcriptome , Virus Diseases/blood , Virus Diseases/classification , Virus Diseases/genetics , Viruses/classification , Viruses/pathogenicity
8.
Eur J Clin Invest ; 51(12): e13626, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1273086

ABSTRACT

BACKGROUND: Fever-7 is a test evaluating host mRNA expression levels of IFI27, JUP, LAX, HK3, TNIP1, GPAA1 and CTSB in blood able to detect viral infections. This test has been validated mostly in hospital settings. Here we have evaluated Fever-7 to identify the presence of respiratory viral infections in a Community Health Center. METHODS: A prospective study was conducted in the "Servicio de Urgencias de Atención Primaria" in Salamanca, Spain. Patients with clinical signs of respiratory infection and at least one point in the National Early Warning Score were recruited. Fever-7 mRNAs were profiled on a Nanostring nCounter® SPRINT instrument from blood collected upon patient enrolment. Viral diagnosis was performed on nasopharyngeal aspirates (NPAs) using the Biofire-RP2 panel. RESULTS: A respiratory virus was detected in the NPAs of 66 of the 100 patients enrolled. Median National Early Warning Score was 7 in the group with no virus detected and 6.5 in the group with a respiratory viral infection (P > .05). The Fever-7 score yielded an overall AUC of 0.81 to predict a positive viral syndromic test. The optimal operating point for the Fever-7 score yielded a sensitivity of 82% with a specificity of 71%. Multivariate analysis showed that Fever-7 was a robust marker of viral infection independently of age, sex, major comorbidities and disease severity at presentation (OR [CI95%], 3.73 [2.14-6.51], P < .001). CONCLUSIONS: Fever-7 is a promising host immune mRNA signature for the early identification of a respiratory viral infection in the community.


Subject(s)
RNA, Messenger/blood , Respiratory Tract Infections/diagnosis , Virus Diseases/diagnosis , Adaptor Proteins, Vesicular Transport/genetics , Aged , Aged, 80 and over , Cathepsin B/genetics , DNA-Binding Proteins/genetics , Early Warning Score , Female , Gene Expression Profiling , Humans , Male , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Nasopharynx/virology , Respiratory Tract Infections/blood , Respiratory Tract Infections/genetics , Transcriptome , Virus Diseases/blood , Virus Diseases/genetics , gamma Catenin/genetics
9.
Adv Food Nutr Res ; 96: 417-429, 2021.
Article in English | MEDLINE | ID: covidwho-1265623

ABSTRACT

Selenium (Se) is an element commonly found in the environment at different levels. Its compounds are found in soil, water, and air. This element is also present in raw materials of plant and animal origin, so it can be introduced into human organisms through food. Selenium is a cofactor of enzymes responsible for the antioxidant protection of the body and plays an important role in regulating inflammatory processes in the body. A deficiency in selenium is associated with a number of viral diseases, including COVID-19. This element, taken in excess, may have a toxic effect in the form of joint diseases and diseases of the blood system. Persistent selenium deficiency in the body may also impact infertility, and in such cases supplementation is needed.


Subject(s)
COVID-19/blood , Nutritional Status , Selenium/blood , COVID-19/etiology , Female , Humans , Infertility/blood , Infertility/drug therapy , Infertility/etiology , Male , Selenium/deficiency , Selenium/therapeutic use , Selenium/toxicity , Virus Diseases/blood , Virus Diseases/etiology
10.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
11.
EBioMedicine ; 67: 103352, 2021 May.
Article in English | MEDLINE | ID: covidwho-1205123

ABSTRACT

BACKGROUND: Precise differential diagnosis between acute viral and bacterial infections is important to enable appropriate therapy, avoid unnecessary antibiotic prescriptions and optimize the use of hospital resources. A systems view of host response to infections provides opportunities for discovering sensitive and robust molecular diagnostics. METHODS: We combine blood transcriptomes from six independent datasets (n = 756) with a knowledge-based human protein-protein interaction network, identifies subnetworks capturing host response to each infection class, and derives common response cores separately for viral and bacterial infections. We subject the subnetworks to a series of computational filters to identify a parsimonious gene panel and a standalone diagnostic score that can be applied to individual samples. We rigorously validate the panel and the diagnostic score in a wide range of publicly available datasets and in a newly developed Bangalore-Viral Bacterial (BL-VB) cohort. FINDING: We discover a 10-gene blood-based biomarker panel (Panel-VB) that demonstrates high predictive performance to distinguish viral from bacterial infections, with a weighted mean AUROC of 0.97 (95% CI: 0.96-0.99) in eleven independent datasets (n = 898). We devise a new stand-alone patient-wise score (VB10) based on the panel, which shows high diagnostic accuracy with a weighted mean AUROC of 0.94 (95% CI 0.91-0.98) in 2996 patient samples from 56 public datasets from 19 different countries. Further, we evaluate VB10 in a newly generated South Indian (BL-VB, n = 56) cohort and find 97% accuracy in the confirmed cases of viral and bacterial infections. We find that VB10 is (a) capable of accurately identifying the infection class in culture-negative indeterminate cases, (b) reflects recovery status, and (c) is applicable across different age groups, covering a wide spectrum of acute bacterial and viral infections, including uncharacterized pathogens. We tested our VB10 score on publicly available COVID-19 data and find that our score detected viral infection in patient samples. INTERPRETATION: Our results point to the promise of VB10 as a diagnostic test for precise diagnosis of acute infections and monitoring recovery status. We expect that it will provide clinical decision support for antibiotic prescriptions and thereby aid in antibiotic stewardship efforts. FUNDING: Grand Challenges India, Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, Govt. of India.


Subject(s)
Bacterial Infections/diagnosis , Biomarkers/blood , Computational Biology/methods , Virus Diseases/diagnosis , Adult , Bacterial Infections/blood , Bacterial Infections/genetics , Databases, Factual , Decision Support Systems, Clinical , Diagnosis, Differential , Female , Gene Expression Profiling , Humans , India , Male , Middle Aged , Observational Studies as Topic , Predictive Value of Tests , Protein Interaction Maps , Virus Diseases/blood , Virus Diseases/genetics
13.
Blood Rev ; 46: 100745, 2021 03.
Article in English | MEDLINE | ID: covidwho-726418

ABSTRACT

COVID-19 is a new pandemic, caused by Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-Cov2) infection and characterized by a broad spectrum of clinical manifestations. Inflammation and the innate immune system have been recently recognized as pivotal players in the most severe forms, characterized by significantly elevated levels of pro-inflammatory cytokines. In this setting, several studies have also reported the presence of abnormalities in coagulation parameters and platelets count, possibly identifying a subgroup of patients with poor prognosis. Some reports of full-blown thromboembolic events are emerging. Among the possible mechanisms underlying coagulation dysfunction, the so-called "cytokine storm" seems to play a pivotal role. Other candidate factors include virus-specific mechanisms, related to the virus interaction with renin angiotensin system (RAS) and the fibrinolytic pathway, but also comorbidities affecting these patients. Coagulation dysfunction is therefore a candidate risk factor for adverse outcomes in COVID-19 and should be carefully addressed in clinical practice.


Subject(s)
Blood Coagulation Disorders/virology , COVID-19/blood , Aged , Blood Coagulation , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , COVID-19/immunology , Female , Humans , Immune System , Inflammation/blood , Inflammation/immunology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Virus Diseases/blood , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL